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Abstract. Based on the quasi-particle description of the QCD medium at finite temperature and density
we formulate the phenomenological model for the equation of state that exhibits crossover or the first-order
deconfinement phase transition. The models are constructed in such a way as to be thermodynamically con-
sistent and to satisfy the properties of the ground state nuclear matter complying with constraints from
intermediate heavy-ion collision data. Our equations of states show a quite reasonable agreement with the
recent lattice findings on the temperature and baryon chemical potential dependence of relevant thermody-
namical quantities in the parameter range covering both the hadronic and quark–gluon sectors. The model
predictions on the isentropic trajectories in the phase diagram are shown to be consistent with the recent
lattice results. Our nuclear equations of state are to be considered as an input to the dynamical models de-
scribing the production and the time evolution of a thermalized medium created in heavy-ion collisions in
a broad energy range from SIS up to LHC.

PACS. 21.65.+f; 24.85.+p; 12.38.Aw; 12.38.Mh

1 Introduction

QCD at the finite temperature T and/or baryon chem-
ical potential µB is of fundamental importance, since it
describes the relevant features of particle physics in the
early universe, in neutron stars and in heavy-ion collisions
(see e.g. [1, 2]). With the relativistic heavy-ion collision ex-
periments at the AGS, SPS and RHIC accelerators one
explores the phase diagram of strongly interacting mat-
ter in a broad parameter range of temperature and baryon
density. Lattice QCD results on the equation of state (EoS)
of QCD matter provide a basic input for the analysis of ex-
perimental signatures of the possible quark–gluon plasma
formation in heavy-ion collisions. Directly addressing the
EoS, the hydrodynamics realizes the connection between
the matter properties and observables. The hydrodynamic
treatment of the whole time evolution of colliding nuclei re-
quires knowledge of the nuclear EoS within a large interval
of its thermodynamic variables covering both the quark–
gluon and hadronic sectors.
In recent years significant progress has been made in

understanding the phase diagram of QCD at non-zero

a e-mail: hvorost@theor.jinr.ru
b e-mail: vvskokov@theor.jinr.ru
c e-mail: V.Toneev@gsi.de
d e-mail: redlich@ift.uni.wroc.pl

baryon chemical potential as the non-perturbative lattice
QCDmethods were extended to access the relevant regions
of the phase diagram. Recently, the first lattice calcula-
tions have been performed for a non-vanishing T and µB
for systems with Nf = 2 [3, 4] and Nf = 2+1 [5, 6] flavors.
However, due to a set of approximations the lattice gauge
theory (LGT) is still not able to provide results on the
properties of the hadronic matter in the confined phase.
LGT is also restricted to moderate values of the baryon
chemical potential µB such that µB � T . That is why dif-
ferent phenomenological models are required to describe
the thermodynamic properties and equation of state of
QCD matter for larger baryon densities. Obviously, such
models depend on the set of parameters that are usu-
ally fixed to reproduce the existing LGT results as well
as the basic phenomenological properties of the nuclear
matter obtained from the experimental data. Recently,
the thermodynamics of the quark–gluon phase was inter-
preted quite successfully within the QCD inspired massive
quasi-particlemodels [7–17]. On the other hand, as demon-
strated by lattice calculations, a rapid growth of the en-
ergy density ε and pressure p when approaching the critical
temperature Tc was shown to be reproduced in terms of
the hadron resonance gas model with scaled masses [20–
22]. Only recently there have been attempts to describe
lattice QCD thermodynamics both above and below Tc
in terms of a field theoretical model, including the fea-
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tures of both deconfinement and chiral symmetry restora-
tion [23], as well as within some phenomenological models
that are based on lattice QCD results for the quark–gluon
partition function [24]. Some unique parametrization of
the QCD EoS below and above Tc was also presented
in [25].
The phenomenological equation of state should not

only be thermodynamically consistent [26] but should also
be capable to reproduce the global behavior of the nuclear
matter near the ground state and its saturation proper-
ties. In addition, there are experimental restrictions com-
ing from the flow analysis in heavy-ion collisions which
limit the acceptable theoretical values of pressure in a fi-
nite interval of baryon densities nB at T = 0 [27, 28]. Some
constraints on the EoS are also imposed through the analy-
sis of cold charge-neutral baryonic matter in β-equilibrium
compact stars [29, 30]. There are also essential constraints
on the model properties coming from the recent LGT
results.
In this paper, we will construct the EoS of strongly

interacting QCD matter with a deconfinement phase tran-
sition that satisfies the above mentioned hadronic con-
straints and those imposed by the recent lattice QCD re-
sults obtained for the (2+1)-flavor system at finite T and
non-vanishing baryonic chemical potential.
This paper is organized as follows: In Sect. 2 we in-

troduce the quasi-particle model for the EoS with a de-
confinement phase transition. In Sect. 3 the model predic-
tions are compared with the recent lattice data obtained
in (2+1)-flavor QCD at the finite T and µB. Our results
and comments on the properties of the QCD equation
of state and thermodynamics are summarized in the last
section.

2 The equation of state

Lattice results show that even at temperature T much
larger than deconfinement temperature Tc the thermo-
dynamical observables like pressure or entropy, baryon
number and energy density are still by � 20% deviating
from their asymptotic ideal-gas values. Such deviations,
observed at T > 2Tc, were shown to be well understood
by a systematic contribution in the self-consistent imple-
mentation of quasi-particle masses in the HTL-resummed
perturbative QCD [31]. On the other hand, the LGT ther-
modynamics below Tc was shown to be well reproduced
by the hadron resonance gas partition function [20–22].
To possibly describe the thermodynamics at T = Tc or
near the phase transition additional model assumptions
are required [11, 32–34].
It is clear from the above that a straightforward model

for the QCD EoS can be constructed by connecting a non-
interacting hadron resonance gas in the low tempera-
ture phase with an ideal quark–gluon plasma in some
non-perturbative bag for the color deconfined phase [13].
These phases are matched at the phase transition bound-
ary by means of the Gibbs phase equilibrium condi-
tion. By construction, this approach yields the first-order

phase transition. Such a MIT-bag-like model [35] is so
far the simplest method to implement the confinement
phenomenon in the EoS, though it has some serious short-
comings.
A more complete method to model the QCD EoS is

based on the effective Hamiltonian that includes interac-
tions of the constituents. In the quasi-particle approxima-
tion such a Hamiltonian can be modeled through density-
dependent mean-field interactions [26, 36–38]:

H =
∑

j∈h,q,g

∑

s

∫
drψ+j (r, s)

(√
−∇2+m2i +Uj(ρ)

)

×ψj(r, s)−C(ρ) ·V , (1)

where j enumerates different species of quasi-particles
(hadrons and/or unbound quarks and gluons) and s stands
for their internal degrees of freedom. Here Uj(ρ) is the
density-dependent mean-field acting on the quasi-particle
j described by the field operator ψj withmj being the cur-
rent mass of quarks and gluons or the free mass of hadrons.
Applying the density-dependent Hamiltonian (1) in the
partition function requires some additional constraints
that are needed to fulfill the thermodynamic consistency
condition [39–41]:

〈
∂H

∂T

〉
= 0 ,

〈
∂H

∂ρj

〉
= 0 , (2)

where 〈A〉 denotes the average value of the operatorA over
the statistical ensemble.With the Hamiltonian (1) the con-
ditions (2) can be also expressed as [39–41]

∑

j

ρj
∂Uj

∂ρi
−
∂C

∂ρi
= 0 ,

∑

j

ρj
∂Uj

∂T
−
∂C

∂T
= 0 . (3)

It can be shown [26, 36–38] that the conditions (3) are
satisfied only if the mean field Uj(ρ) and the correcting
function C(ρ) are temperature independent.
In the following, we consider the basic structure of the

effective Hamiltonian (1) to model the EoS of hadronic and
quark–gluon plasma phase.

2.1 The hadronic phase

The hadronic phase is considered as a gas of hadrons and
resonances in the thermodynamic equilibrium. In general,
the particle density of species j is obtained from

nj ≡ nj(T, µj−Uj) =
dj

2π2

∫ ∞

0

dkk2fj(k, T, µj−Uj) ,

(4)

where the one-particle distribution function with an argu-
ment z is

fj(k, T, z) =

⎡

⎣exp

⎛

⎝

√
k2+m2j − z

T

⎞

⎠+Lj

⎤

⎦

−1

, (5)
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with Lj = +1 for fermions and Lj =−1 for bosons, while
dj is the spin–isospin degeneracy factor. The chemical po-
tential µj is related to the baryon (µB) and the strangeness
(µS) chemical potentials by

µj = bjµB+ sjµS , (6)

with bj and sj being the baryon number and strangeness

of the particle j. The hadronic potential Uj ≡ U
(h)
j is de-

scribed by a non-linear mean-field model [42]:

U
(h)
j = gr,jϕ1(x)+ ga,jϕ2(y) , (7)

where gr,j > 0 and ga,j < 0 are repulsive and attractive
coupling constants, respectively. The effect of interactions
results also in an additional density-dependent term C(ρ)
that contributes to the thermodynamic pressure and en-
ergy densities. If the particle interaction is taken in form
of (1), the thermodynamic consistency implies that the
functions ϕ1(x) and ϕ2(y) depend only on particle densi-
ties. In [42] these functions were chosen such that

b1ϕ1 = x , −b1
(
ϕ2+ b2ϕ

3
2

)
= y , (8)

where

x=
∑

i

gr,ini , y =
∑

i

ga,ini ,

with b1 and b2 being free parameters. The ϕ
3
2 term is in-

troduced to get a slower than linear increase of attraction
with density at a high compression as it happens in the
relativistic mean-field models. Having in mind that the
hadronic EoS will be compared with that of the quark–
gluon plasma, it is convenient to rewrite (8) in terms of
a number of constituent quarks and antiquarks νi:

ρj = νjnj ≡ νjnj(T, µj−Uj) . (9)

In the original paper [42], the hadronic phase was mod-
eled as a mixture of nucleons and ∆’s (i.e. j =N,∆). Fol-
lowing [26], we generalize this approach by including all
hadrons and resonances with a mass up to 1.6 GeV. One
also assumes that all coupling constants scale with the
number of constituent quarks [26]:

U
(h)
j = νj

([
ϕ̃1(ρ

(h))
]α
+ ϕ̃2(ρ

(h))
)
, (10)

where ϕ̃1 and ϕ̃2 satisfy (8) in the following form:

c1ϕ̃
α
1 = ρ

(h) , −c2ϕ̃2− c3ϕ̃
3
2 = ρ

(h) , (11)

with ρ(h) =
∑
j νjρj = 3

∑
B nj +2

∑
M nj . As compared

to (8) a free parameter α is also introduced in (10). This
parameter is used to control the strength of the repul-
sive interactions at high density [36–38]. The parameters
in (11) are expressed as [36, 37]

c1 =
b1

(gr,j/νj)2
, c2 =

b1

(ga,j/νj)2
, c3 =

b1b2

(ga,j/νj)4
,

and they are fixed by requiring that the properties of the
ground state (T = 0 and nB = n0 ≈ 0.15 fm−3) of the nu-
clear matter are reproduced: zero pressure, binding energy
per nucleon of −16MeV and incompressibility of 210MeV.
Solving the cubic equation (11), one gets the interaction

potential thus:

U
(h)
j = νj

[
1

c1
(ρ(h))α−F (ρ(h))

]
, (12)

where the function F depends on the density of quarks
bounded inside hadrons as follows:

F (t) =
121/3

6
η−2βη−1 with η =

(
t

a
+

√
β3+

t2

a2

) 1
3

.

(13)

Here a, β are proportional to the coefficients of the (11):
a= c3/9 and β = c2/12

1/3.
In this representation we obtained for the hadronic

pressure

p(H)
(
T, µj−U

(h)
j

)
=
∑

j∈h

dj

6π2

∫ ∞

0

k2√
k2+m2j

×fj
(
k, T, µj−U

(h)
j

)
k2dk+C(ρ(h))

(14)

and for the energy density

ε(H)
(
T, µj−U

(h)
j

)
=
∑

j∈h

dj

2π2

∫ ∞

0

(√
k2+m2j +U

(h)
j

)
fj

×
(
k, T, µj−U

(h)
j

)
k2dk−C(ρ(h)) ,

(15)

where the function C is obtained from

C(ρ(h)) =
1

c1

α

α+1
(ρ(h))α−ρ(h)F (ρ(h))

+

∫ ρ(h)

0

F (t)dt . (16)

As shown in Fig. 1, the above hadronic EoS satisfies
the constraint resulting from the nucleon flow analysis of
heavy-ion collisions in the energy range � 10 AGeV. The
upper boundary of the shaded area is consistent with the
constraint coming from the analysis of the neutron star
properties [30]. In the high-temperature regime there is
also a reasonable agreement of our model with the thermo-
dynamics of the interacting pion gas from [43] (see Fig. 2).

2.2 The two-phase bag model

In the MIT-bag-like model, the deconfinement phase tran-
sition is determined by matching the EoS of an ideal rel-
ativistic gas of hadrons and resonances to that of an ideal
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Fig. 1. Pressure as a function of baryon density for T = 0. Grey
and black solid lines are calculated for the modified Zimanyi
model and ideal gas EoS, respectively. The shaded region cor-
responds to the Danielewicz et al. constraint [27, 28]

gas of quarks and gluons. In the following we consider the
two-phase (2P) model that accounts for interactions sepa-
rately in the hadronic and quark–gluon plasma phase. The
hadronic phase is described within the phenomenological
mean-field model introduced in the previous section. Fol-
lowing (4), the total baryon density and the strangeness
density in the hadronic phase can be expressed as

nHB =
∑

j∈h

bj nj

(
T, µj−U

(h)
j

)
, (17)

nHS =
∑

j∈h

sj nj

(
T, µj−U

(h)
j

)
, (18)

where the sum is taken over all hadrons and resonances.
Similarly, the pressure and energy density of the species j
are given by (14) and (15).
In the quasi-particle approximation, the QGP phase is

commonly described as a gas of partons (non-interacting
point-like quarks, antiquarks and gluons) confined in
a “bag”. The non-perturbative effects associated with con-
finement are presented by the constant vacuum energy B.

Fig. 2. Temperature depen-
dence of the reduced pres-
sure and energy density for
an interacting pion gas (π+
ρ system). The solid line is
our result, dash-dotted and
dashed ones are the interact-
ing [43] and ideal pion gas,
respectively

The recent LGT results show that such an approach is
not adequate as the EoS differs from the asymptotic ideal-
gas values even at temperatures as high as 100Tc [44].
The perturbative QCD results can, however, be improved
through the so-called hard thermal loop (HTL) expan-
sion. According to the HTL perturbative expansion, the
QCD thermodynamics at high temperature is controlled
by quasi-particles with a temperature dependent mass
mq(T ). For µB = 0 one gets [44–46]

m2q(T )−m
2
q0 =

Ng

16Nc
T 2g2 . (19)

To model the HTL results within the mean-field ap-
proach one introduces the quark and gluon potentials to
reproduce the behavior of the HTL masses (19) in the
high-temperature limit. This in general results in an addi-
tional equation for the unknown gluon density. To simplify
the problem we modify the potential so that it coincides
only with the HTL expression for quarks. In the high-
temperature limit and having in mind that ρ ∼ T 3, the
simplest phenomenological choice of the potential is

U (pl) = B(ρ(pl))1/3 , (20)

where B is obtained comparing the asymptotic expansion
of (20) with the HTP result

B = g

√
Ng
16Nc

(
ζ(3)

2π2
(2dg+3Nfdq)

)1/3 , (21)

with dq and dg being the degeneracy factors for quarks and
gluons, respectively. For Nc = 3 andNg = 8 one gets

B(Nf = 3) = 0.2351g , (22)

B(Nf = 2) = 0.2542g , (23)

where the strong interaction coupling constant g is treated
as a free parameter.
The thermodynamic self-consistency conditions require

that the mean-field contribution to the pressure and energy
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density in equations like (14) and (15) is respectively

U
(pl)
i = Bνi(ρ

(pl))1/3 , (24)

C(ρ(pl)) =
B

4
(ρ(pl))4/3+B , (25)

where the plasma particle density ρ(pl) =
∑
j∈g,q,q̄ ρj and

the bag constantB is included in the correcting functionC.
With such mean-field potentials the pressure and en-

ergy density in the plasma phase carried by u, d and s
quarks and antiquarks is obtained:

pQ
(
T, µj−U

(pl)
j

)
=
∑

j∈g,q,q̄

pj

(
T, µj−U

(pl)
j

)
−C(ρ(pl)) ,

(26)

εQ
(
T, µj−U

(pl)
j

)
=
∑

j∈g,q,q̄

εj

(
T, µj−U

(pl)
j

)
+C(ρ(pl)) .

(27)

To quantify these observables we use the quark masses
mu =md = 65MeV and ms = 135MeV, the gluon mass
mg = 700MeV and the bag constantB

1/4 = 207MeV. Such
parameters yield a transition temperature Tc ≈ 170MeV in
agreement with the recent lattice result obtained for the
vanishing net baryon number [2]. For massless gluons the
equation of state has the simple form

pg(T ) =
dgπ

2

90
T 4 , εg(T ) = 3pg(T ) =

dgπ
2

30
T 4 ,

with dg = 16 . (28)

The baryon number and strangeness density in the
quark–gluon plasma are obtained following (17) and (18)
from

nQB =
∑

j∈g,q,q̄

bjnj

(
T, µj−U

(pl)
j

)
, (29)

nQS =
∑

j∈g,q,q̄

sjnj

(
T, µj−U

(pl)
j

)
. (30)

The equilibrium between the plasma and the hadronic
phase is determined by the Gibbs conditions for the ther-
mal (TQ = TH), mechanical (pQ = pH) and chemical (µQB =
µHB , µ

Q
S = µ

H
S ) equilibrium. At a given temperature T and

baryon chemical potential µB the strange chemical poten-
tial µS is obtained by requiring that the net strangeness of
the total system vanishes. Consequently, the phase equilib-
rium condition and strangeness conservation imply that

pH
(
T, µj−U

(h)
j

)
= pQ

(
T, µj−U

(pl)
j

)
, (31)

nB = λn
Q
B

(
T, µj−U

(pl)
j

)
+(1−λ)nHB

(
T, µj−U

(pl)
j

)
,

(32)

0 = λnQS

(
T, µj−U

(pl)
j

)
+(1−λ)nHS

(
T, µj−U

(pl)
j

)
,

(33)

where λ = VQ/V is the fraction of the volume occupied
by the plasma phase. The phase boundaries of the coex-
istence region are found by putting λ = 0 for the hadron

phase boundary and λ = 1 for the plasma boundary. By
construction the 2P EoS results in a first-order phase tran-
sition with discontinuous behavior of energy and baryon
densities.
According to the Gibbs condition [47], the number of

thermodynamic degrees of freedom that may be varied
without destroying the equilibrium of a mixture of r phases
with nc conserved charges isN = nc+2−r. For the consid-
ered hadron–quark deconfinement transition r = 2. If the
baryon number is the only conserved quantity, then nc = 1
and N = 1. Thus, the phase boundary is one-dimensional,
i.e. a line. The Maxwell construction for the first-order
phase transition corresponds to r = 2 and nc = 1. When
both the baryon number and strangeness are conserved,
that is when nc = 2, one has N = 2 and therefore the
phase boundary is a surface. In such a system, a standard
Maxwell construction is no longer possible [48–50]1.
When two phases coexist, the system is in general not

homogeneous because the phases occupy separate domains
in space. We do not, however, explicitly account for such
a domain structure or a possible surface energy contri-
bution to the equation of state. The only consequence of
the phase separation in the considered 2P model is that
the interaction between quasi-particles in the plasma and
hadronic phase are neglected. This is different from the sta-
tistical mixed-phase model that will be discussed in the
next subsection.
The resulting phase boundaries between the hadronic

phase and the quark–gluon plasma in the 2P model are
shown in Fig. 3. At T = 0 the coexistence region appears at
nB/n0 � 8. This density is by factor two larger than the one
obtained in the conventional MIT-bag-like model [26, 29]).
This is because in our calculations the quarks and gluons
are treated as massive quasi-particles. As it will be shown
in the next section, the finite mass of the quasi-particles is
needed in the quark–gluon plasma to get the EoS that is
consistent with the LGT results.

2.3 The mixed-phase model

In the 2P model the interactions between quark, gluons
and hadrons are entirely neglected in the coexistence re-
gion. In the following we introduce the MP model where
such interactions are possible. The underlying assump-
tion of the MP model [36–38] is that unbound quarks and
gluons may coexist with hadrons forming a homogeneous
quark/gluon–hadron phase. Since the mean distance be-
tween hadrons and quarks or gluons in this mixed phase
may be of the same order as that between hadrons, the in-
teraction between all these constituents (unbound quarks,
gluons and hadrons) plays an important role as it defines
the order of the phase transition.

1 In [48–50] baryonic and electric charge conservation was
considered in an application to the nuclear liquid–gas phase
transition. As to strangeness conservation the emphasis was
made mainly on the strangeness distillation effect [51]. Phase
boundaries for this case were studied in detail in [52]. A more
complete list of appropriate references can be found in [26].
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Fig. 3. The phase boundary
calculated in the 2P model
with the physical values of
parameters as explained
in Sect. 3

Under a quite general requirement for the confinement
of color charges, the mean-field potential of quarks and glu-
ons in the plasma phase is approximated by

Uq(ρ
(pl)) = Ug(ρ

(pl)) =
A

(ρ(pl))γ
+B (ρ(pl))1/3 ; γ > 0 ,

(34)

where ρ(pl) = nq+nq̄+ng. The second term in (34) is intro-
duced to account for the growth of the quasi-particle mass
with the density as that obtained in the HTL approxima-
tion (see (24)). The first term in (34) reflects two important
limits of the QCD interactions. For ρ(pl)→ 0, this potential
term approaches infinity, i.e. an infinite energy is necessary
to create an isolated quark or gluon that corresponds to the
confinement of color objects. The other extreme limit of
infinite density is consistent with the asymptotic freedom.
The generalization of the mean-field potential from (34)

to the case of the mixed quark–hadron phase is obtained
replacing ρ(pl) in (34) by the total density of quarks and
gluons ρ(mp) with

ρ(mp) = ρq+ρq̄+ρg+η
∑

j

νjρj ≡ ρ
(pl)+ηρ(h) . (35)

The presence of the total number density ρ(mp) in (34) im-
plies interactions between all components of the mixed
phase. For η= 0 there is no interactionbetweenhadrons and
unbound quarks and gluons. This case corresponds to such
a strong binding of the hadron constituents that the pres-
ence of free color charges in their surroundingdoesnot result
in their color polarization, i.e. hadrons remain color neu-
tral and do not see quarks and gluons outside the hadron.
Thermodynamically, thepotentialwithη = 0 implies afirst-
order phase transition. For η = 1 there is a very strong color
polarization of hadrons. Consequently, there is no difference
between bound and unbound quarks and gluons. This ap-
proximationwas used in [36–38].Herewe considerηas a free
parameter that is chosen inawaysoas to reproduce theLGT
results for theQCDequation of state.
The hadronic potential in the Hamiltonian (1) was

described by a non-linear mean-field model. However,
the presence of unbound quarks and gluons will modify

this hadronic interaction due to the polarization of color
charges. Thus, in general,

U
(mp)
j = U

(h)
j +U

(h−pl)
j . (36)

The constraints imposed by the thermodynamic consis-
tency conditions (3) can be used to find the potential for
the interaction of unbound quarks/gluons with hadrons to
be [36–38]

U
(h-pl)
j = νjη

(
A

(ρ(mp))γ
−

A

(ηρ(h))γ

+B
[
(ρ(mp))1/3− (ηρ(h))1/3

])
. (37)

Consequently, the pressure and the energy density in
the MP model are obtained from

pMP
(
T, µj−U

(mp)
j

)
=
∑

j∈g,q,q̄

pj

(
T, µj−U

(mp)
j

)

+
∑

j∈h

pj

(
T, µj−U

(mp)
j

)
−C(ρ(mp)) ,

(38)

εMP
(
T, µj−U

(mp)
j

)
=
∑

j∈g,q,q̄

εj

(
T, µj−U

(mp)
j

)

+
∑

j∈h

εj

(
T, µj−U

(mp)
j

)
+C(ρ(mp)) ,

(39)

where

C(ρ(mp)) =
xα

α+1
(ρ(h))α+1−ρ(h)F (ρ(h))+

∫ ρ(h)

0

F (t)dt

−
γA

1−γ

[
(ρ(mp))1−γ − (ρ(h))1−γ

]

+
B

4

[
(ρ(mp))4/3− (ηρ(h))4/3

]
. (40)

The MP model described above exhibits a crossover de-
confinement phase transition. The transition temperature
Tc corresponds to a maximum in the T -dependence of the
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Fig. 4. The phase boundary calculated in the MP model (solid
line). The dotted and dot-dashed lines correspond to the state
where with the fraction of unbound quarks is 0.5 and 0.6, re-
spectively

heat capacity at the given value ofµB (see the next section).
The resulting phase boundary is shown in Fig. 4. At T �
50MeVthemaximumoftheheatcapacity isnotwelldefined.
The calculation in Fig. 4 was performed with the physical
values of the parameters as introduced in the next section.
In the MPmodel, hadrons survive at T > Tc. If the frac-

tion of unbound quarks is defined as ρ(pl)/(ρ(pl)+ ρ(h)),
then one can see from Fig. 4 that at µB = 0 and the tem-
perature as high as T −Tc ∼ 100MeV there are still 40%
quarks that are bounded inside hadrons.

3 The comparison with the lattice data

The lattice gauge theory is the only approach that allows
one to extract the physical EoS of the QCD medium. To
further constrain the phenomenological models for the EoS
introduced in the last section, we will compare their predic-
tions with the available LGT results. We focus mainly on
the recent LGT findings obtained in (2+1)-flavor QCD at
the finite temperature and chemical potential [5, 6].
In order to use the mixed-phase and 2P models for the

further comparison with lattice results one needs, however,
to take into account that lattice calculations are generally
performed with quark masses heavier than those realized
in nature. Consequently, the hadron mass spectrum gener-
ated on the lattice is modified.
In [5, 6] the ratio of the pion mass mπ to the mass of

the ρ meson is around 0.5–0.75, which is roughly 3 times
larger than its physical value. Thus, to compare the model
predictions with LGT results the hadron mass spectrum

Table 1. Parameters of the interpolation formula (41)

a1 a2 a3 a4 a5

0.51±0.1
a1νlj

√
σ

mj
0.115±0.02 −0.0223±0.008 0.0028±0.0015

used in the model calculations should be properly scaled.
For this we use the phenomenological parametrization of
the quark mass dependence of the hadron masses mj(x)
that was shown in [20–22] to be consistent with the MIT-
bag-model results as well as with LGT findings. For the
non-strange hadrons this parametrization reads [20–22]

mj(x)√
σ
� νlja1x+

mj/
√
σ

1+a2x+a3x2+a4x3+a5x4
.

(41)

Here x≡mπ/
√
σ, νlj is the number of light quarks inside

the non-strange hadron (i.e. νlj = 2 for mesons and νlj = 3
for baryons) and σ = (0.42GeV)2. The parameters in the
denominator are tabulated in Table 1.
For strange hadrons that carry strangeness sj = 1 and

sj = 2 we have, respectively,

mj(x)√
σ
= 0.55νljx+

1.7 ·0.42mj/
√
σ

(1+0.068x)
, for sj = 1 ,

(42)

mj(x)√
σ
= 0.5788x+

0.42mj
√
σ

(0.4758+0.0142x)
, for sj = 2 .

(43)

Simultaneously with the change of the hadron mass spec-
trum with the pion mass one needs to account for the
shift of the transition temperature Tc with mπ. We use
the parametrization that is extracted from LGT calcula-
tions [20],

(
Tc√
σ

)

mπ/
√
σ

� 0.4+0.04(1)

(
mπ√
σ

)
. (44)

To compare our phenomenological model EoS with that
obtained on the lattice in [5, 6] we use the modified hadron
mass spectrum form (41)–(43) corresponding to the pion
mπ � 508MeV as fixed in these LGT calculations. In the
deconfined phase the current quark masses and gluon mass
are in general also free parameters. In the present cal-
culations we fixed mu =md = 65MeV, ms = 2.08mu and
mg � 700MeV as followed from the successful description
of the quark sector of the above LGT data in terms of the
quasi-particle model [11].
We look for a phase transition at the appropriate tem-

perature Tc defined by (44) by varying mainly the bag con-
stant B in the 2P model or the strength parameter A in
the mixed-phase model. The further fine tuning is carried
out by means of the remaining parameters (one parameter
in the 2P model and three for the mixed-phase model) to
get the best description of LGT findings on temperature
dependence of different thermodynamical quantities.
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In the 2P model, where the two phases do not inter-
act with each other, the critical temperature Tc is governed
mainly by the value of the bag constantB and the parame-
ter α that characterizes the hardness of the EoS. Choosing
B1/4 = 223MeV and α = 2.1 one gets Tc ≈ 176MeV and
ε/T 4 |Tc = 7.84 to be consistent with the LGT results. We
have to stress, however, that for some values of the param-
eters, e.g. for too heavy masses, the set of equations (31)–
(33) may have no solution.
In the MP model the critical temperature is defined at

the position of the maximum of the heat capacity

cV = ∂ε/∂T |V=const .

The value of Tc depends mainly on parameters that
quantify the quark/gluon interactions. With A1/(3γ+1) =
270MeV and γ = 0.3 the accepted value of the criti-
cal temperature is seen in Fig. 5 to be 188MeV. As was
noted in [26], γ = 1/3 corresponds to a string-like quark
interaction.
In Figs. 6 and 7 we show the comparison of the MP and

the 2P model predictions with the LGT data obtained for
the thermodynamic pressure p/T 4 and the energy density
ε/T 4 at finite T but for µB = 0.
The lattice calculations in [5, 6] were done on the lat-

tices with Nt = 4 temporal extension. To account for the
finite size effects, the LGT results have to be extrapo-
lated to the continuum limit corresponding to Nt→∞.
In general, such a procedure requires detailed LGT calcu-
lations on the lattices with different Nτ . In [5, 6], to ac-
count approximately for the finite size effect, the Nτ = 4
data for the basic thermodynamic quantities were cor-
rected being multiplied by the constant factors: c0 = 0.518
and cµ = 0.446 for µB = 0 and µB �= 0, respectively. These
factors were determined from the ratios of the Stefan–
Boltzmann ideal-gas limit for the thermodynamic pres-
sure to its corresponding values calculated on the lattice
with Nt = 4.
As it is seen in Fig. 6, a smooth T -dependence of the

pressure in a deconfined phase may be quite well repro-
duced within both the MP and the 2P model. However,

Fig. 6. The reduced pres-
sure at µB = 0 in 2P (the
left panel) and MP (the right
panel) models. Circles are the
lattice data for the (2+1)-
flavor QCD system [5, 6] mul-
tiplied by c0, squires are the
Bielefeld group data for the
same case [53] (see also results
cited in [20])

Fig. 5. Temperature dependence of the reduced heat capacity
at µB = 0

in the hadronic phase, that is, for T/Tc < 1, the models
overestimate the LGT results from [5, 6]. In Fig. 6 also
shown are the LGT results for (2+1)-flavorQCD at µB = 0
from the Bielefeld group [53]. Improved gauge and stag-
gered fermion actions were used there on the lattices with
temporal extent of Nt = 4 and Nt = 6. These data were
also extrapolated to the chiral limit [53]. As seen in Fig. 6,
the Bielefeld data exhibit a smaller limiting pressure as
compared to [5, 6] and essentially higher pressure in the
hadronic sector, though the pion mass is mπ = 770MeV
in the latter calculations. Our models are seen in Fig. 6 to
coincide with the Bielefeld results in the confined phase.
The strongly suppressed pressure at T ≤ Tc found in [5, 6]
is non-physical and could be partly related with a too much
simplified procedure to extrapolate the LGT results to
a continuum limit when applying the same constant scaling
factor for all values of temperatures.
The energy density shown in Fig. 7 behaves differently

in the MP and 2Pmodel. As it is expected in the 2Pmodel,
which exhibits the first-order phase transition, ε/T 4 suffers
a jump at the critical temperature. This jump corresponds
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Fig. 7. The reduced energy
density at µB = 0 in the 2P
(left panel) and MP (right
panel) models. Notation is
the same as in Fig. 6

to an energy density change by ∆ε ∼ 0.9 GeV/fm3. The
LGT results on the temperature dependence of ε/T 4 are
seen in Fig. 7 to be noticeably better reproduced within the
MP than within the 2P model. This is because the MP
model exhibits a crossover-type transition as also found in
the above LGT calculations. The difference between the
LGT results obtained with an improved and standard ac-
tion is also seen on the level of energy density.
Having established the model parameters at µB = 0 we

can further study the model comparisons with the LGT
results at finite baryon density. The temperature depen-
dence of pressure and energy density for finite values of
µB is shown in Figs. 8 and 9 in terms of the “net baryonic
pressure” ∆p/T 4 = (p(T, µB)−p(T, µB = 0))/T 4 and the
“interaction measure”∆/T 4 = (ε−3p)/T 4.
The T -dependence of ∆p/T 4 for different values of µB

is quite well reproduced by both the MP and 2P model.
The fall of ∆p/T 4 for T ≥ Tc is entirely determined by the
value of the coupling g that describes the strength of the
interactions of quasi-particles and their effective mass. The
observed fall does not require any artificial reduction of the
number of quark–gluon degrees of freedom. It turns out
that in both models a similar value of g = 0.5 is necessary
to reproduce the LGT results.

Fig. 8. Temperature depen-
dence of the reduced pres-
sure (p(µB)−p(0))/T

4 at the
baryon chemical potential
µB = 210, 330, 410 and
530 MeV (from the bottom)
within 2P (the left panel) and
MP (the right panel) models.
Points are lattice data for
the (2+1)-flavor system [5, 6]
multiplied by cµ

The interaction measure ∆/T 4 exhibits a rather sharp
maximum slightly above Tc with the shape of the T -
dependence weakly changing with µB. In general, both
models reproduce the above properties of the interaction
measure. However, quantitatively the ∆/T 4 is overesti-
mated in the 2P model and underestimated in the MP
model near the maximum.
The interaction measure characterizes the strength of

the interactions in a system. It is equal to zero for the EoS
of the ultrarelativistic ideal gas of massless particles where
ε= 3p. In the considered 2P model and at T > Tc we are
dealing with a gas of massive quarks and gluons interacting
via a HTL-like potential (24). In contrast, in the MPmodel
at T > Tc, there are interacting unbound quarks, gluons
and bound quarks within the hadrons. The fraction of the
bound quarks amounts in about 85% at T ∼ Tc (which al-
lows one to describe this region in terms of the resonance
gas model [20–22]) and almost vanishes at 3Tc (∼ 5%). In
this context the quark–gluon plasma may be considered as
a strongly interacting correlated system [54–57]. In the
confined phase there is an admixture of quarks at T < Tc
until about 0.9 Tc. This property of the model is very es-
sential for a possible explanation of the “horn” structure in
the K+/π+ excitation function [58] due to manifestation
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Fig. 9. Temperature depen-
dence of the interaction meas-
ure (ε−3p)/T 4 at the baryon
chemical potential µB = 210,
330, 410 and 530 MeV (from
the bottom) within 2P (the
left panel) and MP (the right
panel) models. Points are lat-
tice data for the (2+1)-flavor
QCD system [5, 6] multiplied
by cµ

of the strangeness distillation effect near the critical end
point [59].
The model comparison with the LGT results for the

baryon density is shown in Fig. 10. It is clear from this fig-
ure that in the hadronic sector the baryon density nB/T

3

obtained on the lattice is smaller than that predicted by
the models. However, above Tc there is quite a good agree-
ment of the model with the LGT results. This is partic-
ularly the case for the MP model which shows a better
description of the LGT data near the phase transition.
In our models the absolute values of ∆p/T 4, ∆/T 4 and

nB/T
3 are strongly affected by the parameter η appear-

ing in (35). In the actual calculations η = 0.025; thus, it is
essentially smaller than η = 1 as was found in our earlier
parametrization based only on the LGT data obtained for
µB = 0 [26]. If η = 1 is to be substituted in our actual cal-
culations, then all the above quantities would increase by
a factor of two.
The properties and the behavior of the LGT thermo-

dynamics at finite T and µB have been recently discussed
in the context of the Polyakov-loop-extended Nambu and
Jona–Lasinio (PNJL) model [18]. This PNJL model repre-
sents a minimal synthesis of the spontaneous chiral sym-
metry breaking and confinement. The model correctly de-

Fig. 10. Temperature depen-
dence of the baryon density
at the baryon chemical poten-
tial µB = 210, 330, 410 and
530 MeV (from the bottom)
in 2P (the left panel) and
MP (the right panel) models.
Points are lattice data for the
(2+1)-flavor QCD system [5,
6] multiplied by cµ

scribes the pion properties but obviously is not applicable
near the nuclear ground state. It also does not contain the
resonance contributions to the QCD thermodynamics nor
the hadronic correlations below and above Tc that are es-
sential near the phase transition. Nevertheless, the PNJL
model reproduces the LGT data [3, 4] obtained in 2-flavor
QCD on the pressure difference and the quark number
density at various temperatures and chemical potentials
remarkably well [18]. However, in the PNJL model the in-
teraction measure ∆/T 4 was found to be underestimated
by ∼ 25% similarly as seen in Fig. 9 from our MP model
comparisonwith the (2+1)-flavor QCD results obtained in
LGT.
The phenomenological models considered here describe

the EoS of the QCD matter in a broad range of thermal
parameters that includes the hadronic and quark–gluon
plasma phase. These models are also applicable in cold
nuclear matter as they satisfy essential phenomenological
constraints expected near nuclear saturation. In heavy-ion
collisions, dense QCD matter created in the initial stage is
expected to thermalize and expand without further gener-
ation of the entropy S. In the realistic expansion scenario
some particles may be created and/or absorbed implying
changes in the total entropy of the system. In general, it is
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more convenient to consider the EoS at fixed entropy per
baryon (S/NB). This thermodynamic quantity should be
strictly conserved in an equilibrium case and is also less
affected by any possible particle losses or creation during
the expansion stage. The predictions of our models for the
evolution path in the (T, µB)-plane as obtained from the
condition of fixed S/NB is shown in Fig. 11. There are still
no such isentropic lattice data for (2+1)-flavor system. Re-
cently, the isentropic EoS was obtained on the lattice for
2-flavor QCD at finite µB [60, 61]; however, these were still
for a non-physical mass spectrum that corresponds to the
pion massmπ � 770MeV. These data are plotted in Fig. 11
together with our model results obtained with the EoS
parameters that are fixed for mπ � 508MeV and for (2+
1)-flavor system.
In general, in the high-temperature deconfined phase,

one should not expect a large difference between 2- and
(2+1)-flavor thermodynamics. The value of the quark
mass in the quark–gluon plasma is also not relevant ther-
modynamically if mq/T < 1. In the hadronic phase the
number of quark flavors as well is not essential and leads
only to a moderate change of the global thermodynam-
ics. However, here the value of the quark/pion mass is of
particular importance as it influences the hadronic mass
spectrum. Due to the non-physical and still large pion mass
used in the actual LGT calculations it is not straightfor-
ward to associate the values of the reduced entropy with
the specific bombarding energy. In particular, as noted
in [60, 61], the correspondence of S/NB = 30, 45 and 300
to the AGS, SPS and RHIC energies, respectively, is only
a rough approximation. The QGSM transport model re-
sults [63] for central Pb+Pb collisions at top SPS energy
show that the isentropic regime is reached after about
1 fm/c with S/NB ≈ 25. Also calculations performed in
terms of a 3-fluid relativistic hydrodynamic model show

Fig. 11. Phase trajectories in the T–µB representation. Cir-
cles, squares and triangles are the lattice 2-flavor QCD re-
sults [60, 61] for S/NB = 30, 45 and 300, respectively. The
(2+1)-flavor model predictions are plotted by solid (2P EoS),
dashed (MP EoS) and dot-dashed (Hadronic EoS) lines for
every value of the reduced entropy. The dotted line parameter-
izes the freeze out curve [62]

that the isentropic expansion of central Pb+Pb colli-
sions at the bombarding energy of 158 and 30AGeV re-
sults in S/NB ≈ 30 and 15 [64], respectively. Thus, the
above dynamical models imply noticeably lower values of
S/NB than that obtained within the actual LGT calcu-
lations [60, 61]. The main origin of the above differences
is related with the still too large quark mass used on the
lattice.
As seen in Fig. 11 the MP and 2P models reproduce

the general trend of the lattice trajectories. The lattice
evolution paths are just between the 2P and MP model
predictions.With increasing S/NB these differences are no-
ticeably smaller. The hadronic EoS predicts higher initial
temperatures; however, all three phenomenological models
give similar results for the freeze-out temperature. It is in-
teresting to see in Fig. 11 that the irregularity appearing
near the turning point of the lattice trajectory correlates
with the flattening of the T -dependence in the Gibbs mixed
phase resulting in the 2P model.
The phenomenological model results discussed so far

were obtained assuming the hadronic mass spectrum that
corresponds to the pion mass mπ = 508MeV. The extra-
polation of the EoS to the physical limit is quite straight-
forward. It amounts to replacing the mj(mπ) masses by
their physical values. The quark and gluon masses are kept
the same as being extracted from the LGT data. This
approximation is justified since the change of mq in the
interval 5<mq < 70MeV does not influence the thermody-
namics in the plasma phase [11] very much. Clearly, taking
the physical limit in the EoS also requires one to account
for the shift in Tc. In the 2P model the critical temperature
is recalculated according to (44) and fitted in the model by
the bag constant B and the coupling g to satisfy also the
condition that the critical energy density εc/T

4
c � 6±2 as

found in LGT [20]. Within the 2P model the physical limit
is achieved choosingB1/4 = 207MeV and g = 0.7 which re-
sults in Tc = 173.3MeV and εc/T

4
c = 7.83.

The extrapolation of the MP model EoS to the physical
limit is less transparent due to a rather strong non-linear
relation between the hadronic and plasma phase. In this
model the physical limit is approximately accounted for by
replacing the LGT mass spectrum by its physical form. All
further parameters that are required in the MP model to
quantify the EoS are kept the same as that found in the
comparison of the model predictions with the LGT results.
With the above chosen model parameters the crossover de-
confinement transition appears at Tc = 183MeV. Note that
the phase boundaries in the preceding section were calcu-
lated for these physical parameters of the EoS.

4 Summary

Wehave formulated two different phenomenologicalmodels
for the equation of state within the quasi-particle approxi-
mation of the QCDmatter: the two phase (2P) model with
the first-order deconfinement transition and the mixed-
phase (MP) model in which the transition from hadronic
phase to quark–gluon plasma is of the crossover type.
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In our approach both the hadronic and the quark–gluon
plasma phase are considered to be non-ideal systems. The
interactions between the constituents are included within
the mean-field approximation. The modified mean-field Zi-
manyi model is applied to describe the interacting reson-
ance gas component. In this approach, the saturation prop-
erties of the symmetric nuclear matter in the ground state
are reproduced correctly and the Danielewicz constraints
resulting from heavy-ion collision data at intermediate en-
ergies are well fulfilled.
The quark–gluon phase in the 2P model is constructed

as a massive quasi-particle system supplemented by the
density-dependent potential term which simulates the
HTL interactions. The first-order phase transition from the
hadronic phase to the deconfined quark–gluon plasma is
constructed within the 2P model by means of the Gibbs
phase equilibrium conditions.
In the MP model the coexistence and correlations be-

tween quarks/qluons and hadrons are assumed near de-
confinement. In addition to the HTL-like interaction term
a string-like interaction is introduced between both un-
bound quarks/qluons and quarks that are confined within
hadrons. In this model we are dealing with strongly inter-
acting QCDmatter which exhibits a crossover-type decon-
finement phase transition.
The models are constructed in a way thermodynami-

cally consistent and reproducing the properties of the EoS
as calculated on the lattice. The limited set of model pa-
rameters is defined from the constraints imposed by the
recent lattice data on the temperature and chemical poten-
tial dependence of the basic thermodynamical observables.
The comparison of the model predictions with the LGT
data was performed within the same set of approximations
as used on the lattice. Of particular importance is the cor-
rect treatment of the hadronic mass spectrum which in the
LGT calculations is non-physical due to the still too large
value of the quark mass.
Keeping in mind the principal difference between the

first-order and crossover-type phase transition, both the
2P and MP model were shown to provide a quite satis-
factory description of the LGT thermodynamics for (2+
1)-flavor QCD. Both models reproduce the T - and µB-
dependence of the main thermodynamic quantities in
a broad range of thermal parameters. The observed devia-
tions of the model predictions from the lattice results near
Tc and in the hadronic sector for the (2+1)-flavor case
may be, to a large extent, attributed to uncertainties in
the LGT data due to the finite size effect. The predicted
isentropic trajectories in the phase diagram were shown to
be consistent with that recently calculated on the lattice
within the 2-flavor QCD.
The phenomenological equations of state constructed

here satisfy all physically relevant constraints expected in
the cold and excited nuclear matter. These EoS can be ap-
plied in a broad parameter range that covers the region of
the deconfinement transition in QCD. Thus, both the MP
and 2P EoS could be used as input in dynamical models
that describe the space-time dynamics and the evolution
of the medium created in heavy-ion collisions. Within hy-
drodynamic models our EoS can be important to study the

role and the influence of deconfinement and the order of the
phase transition on the physical observables. Such studies
are in progress.
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